AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

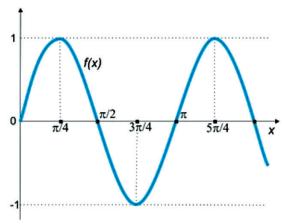
Matemática

3ª série do Ensino Médio	Turma
Avaliação Diagnóstica de Entrada	Data / /
Escola	
Aluno	

UTILIZE O LEITOR RESPOSTA ABAIXO DESSA LINHA ENQUADRANDO A CÂMERA APENAS NAS BOLINHAS

	Α	В	С	D	Ε
1					
2	0	0	0	0	0
3	\cup	0	0	Ŏ	0
4	0	Ö	Ö	00	0000000
5	0	0	0	0	0
6	()	0	0	0	0
7	0	0	0	0	0
7 8 9	0	0	O		0
		0	0	0	0
10		0	0	0	0
11	00	000	Ŏ	00	000
12	\bigcirc	\bigcirc	Õ	\bigcirc	

3EM_25ED_MA_REVISAO_1.indd 1 03/12/2019 16:03:05


Leia com atenção estas instruções gerais antes de realizar a prova:

- Confira se este caderno de prova corresponde ao ano que você está cursando.
- **2). Confira** se no caderno de prova constam as 12 questões de múltipla escolha propostas para essa avaliação. Qualquer problema comunique ao professor.
- Escreva seu nome, escola, data e turma na capa do caderno logo acima do cartão de respostas.
- **4).** Cada questão da prova tem cinco alternativas, identificadas pelas letras A, B, C. D e E, das quais apenas uma será a resposta correta.
- 5). Leia atentamente cada questão antes de resolvê-las.
- **6).** Preencha o cartão de respostas completando totalmente o pequeno círculo, ao lado dos números, e que corresponde à letra da resposta correta.
- **7).** Serão consideradas incorretas questões para as quais o aluno tenha preenchido mais de um círculo no cartão de respostas.
- **8).** Em sala, a comunicação entre os alunos não será permitida, sob qualquer forma ou alegação.
- **9).** Não será permitido o uso de calculadoras, dicionários, telefones celulares, *pen drive* ou de qualquer outro recurso didático, elétrico ou eletrônico, nem o uso de qualquer acessório.
- **10).** Ao concluir a prova, entregue ao professor o caderno de prova com o cartão de respostas preenchido.

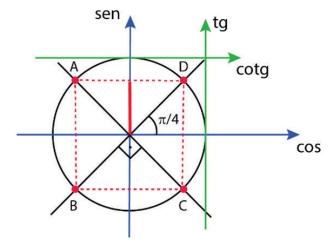
Boa Prova!

03/12/2019 16:03:05

Observe o gráfico abaixo

Ele corresponde a que função?

A)
$$f(x) = sen\left(x + \frac{\pi}{4}\right)$$


B)
$$f(x) = \cos\left(x + \frac{\pi}{4}\right)$$

C)
$$f(x) = sen(2x)$$

D)
$$f(x) = cos(2x)$$

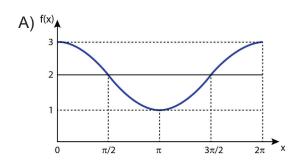
E)
$$f(x) = tg(2x)$$

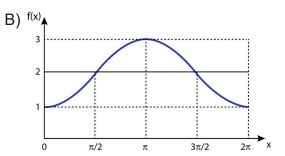
Seja o ciclo trigonométrico representado abaixo por uma circunferência de raio unitário.

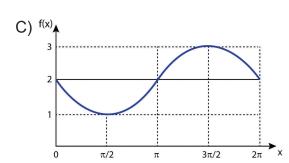
O quadrado ABCD representado na figura possui diagonais \overline{BD} e \overline{AC} que formam 45° com o eixo dos cossenos. Sobre as razões trigonométricas do ângulo $\frac{\pi}{4}$ podemos afirmar que:

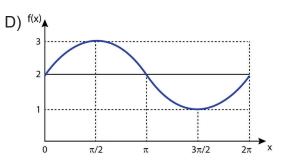
A)
$$\operatorname{sen}\left(\frac{\pi}{4}\right) = \frac{1}{2}$$
 $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$ $\operatorname{tg}\left(\frac{\pi}{4}\right) = \frac{\sqrt{3}}{3}$

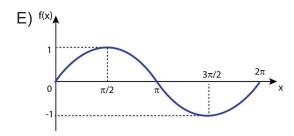
B)
$$\operatorname{sen}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 $\operatorname{cos}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$ $\operatorname{tg}\left(\frac{\pi}{4}\right) = \frac{\sqrt{3}}{3}$

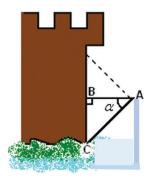

C)
$$\operatorname{sen}\left(\frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$
 $\cos\left(\frac{\pi}{4}\right) = \frac{1}{2}$ $\operatorname{tg}\left(\frac{\pi}{4}\right) = \sqrt{3}$


D)
$$\operatorname{sen}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 $\operatorname{cos}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$ $\operatorname{tg}\left(\frac{\pi}{4}\right) = 1$


E)
$$\operatorname{sen}\left(\frac{\pi}{4}\right) = \frac{1}{2}$$
 $\cos\left(\frac{\pi}{4}\right) = \frac{1}{2}$ $\operatorname{tg}\left(\frac{\pi}{4}\right) = 1$


As funções trigonométricas têm importantes aplicações na ciência como, por exemplo, em modelos matemáticos utilizados para descrever o processo respiratório. Seja a função $f(x)=2-\cos x$ que representa de forma simplificada uma dessas funções.

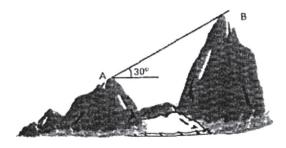

É correto afirmar que o gráfico de f(x) é dado por:



Observe a figura de uma torre medieval e sua ponte levadiça (AB), em que:

$$\overline{AB}=5\,$$

$$\overline{AC}=6,4$$


$$\overline{BC}=4\,$$

Sabendo que o triângulo ABC é retângulo em B, qual das seguintes opções representa o sen α ?

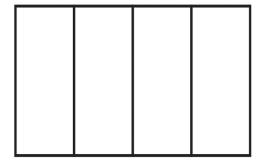
- A) $\frac{5}{6,4}$
- B) $\frac{4}{5}$
- C) $\frac{4}{6,4}$
- D) $\frac{5}{4}$
- E) $\frac{6.4}{5}$

http://clubes.obmep.org.br/blog/brincando-com-trigonometria-problemas/ (Acesso em 30/05/2019)

As alturas (em relação ao nível do mar) em que estão dois pontos A e B são, respectivamente, 812 m e 1020 m. Do ponto **A** vê-se o ponto **B** sob um ângulo de 30° com o plano horizontal, conforme a figura. Determine a distância entre os pontos **A** e **B**.

Dados: sen
$$30^{\circ} = \frac{1}{2}$$
; cos $30^{\circ} = \frac{\sqrt{3}}{2}$; tg $30^{\circ} = \frac{\sqrt{3}}{3}$

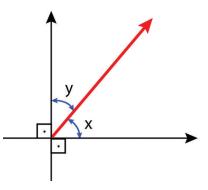
- A) 104 m
- B) $208\sqrt{3}$ m
- C) $\frac{416\sqrt{3}}{3}$ m
- D) 416 m
- E) 208 m


A partir de um grupo de 9 pessoas, formado por 6 homens e 3 mulheres, pretende-se formar filas com 5 dessas pessoas de modo que as 3 mulheres ocupem sempre as 3 primeiras posições. Assim, de todas as filas possíveis, quantas obedecem a essa restrição?

- A) 12
- B) 15
- C) 120
- D) 180
- E) 720

Questão 7

Haverá um torneio interclasses na escola, sendo que cada sala será responsável por criar um "grito de guerra" e pintar uma bandeira listrada como a figura abaixo:



Se foram distribuídos conjuntos idênticos de lápis para cada sala, sendo cada conjunto constituído de 5 cores distintas de lápis, e sabendo que existe a restrição de que as listras adjacentes não podem ser pintadas com a mesma cor, calcule o número de bandeiras que é possível se criar.

- A) 120
- B) 200
- C) 320
- D) 500
- E) 625

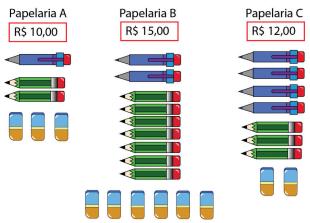
Dois ângulos complementares são tais que um é o dobro do outro.

Podemos afirmar que a tangente do menor desses ângulos vale:

- A) $\frac{\sqrt{2}}{2}$ B) $\frac{\sqrt{3}}{3}$ C) $\frac{1}{2}$
- D) $\sqrt{3}$
- E) $2\sqrt{2}$

Questão 9

As duas figuras ao lado mostram placas de veículos automotores. A primeira mostra o modelo ainda utilizado no Brasil, mas que está em processo de transição para o modelo da segunda placa, que segue um novo padrão para o Mercosul.



Uma reportagem sobre a mudança no padrão das placas informa que a nova placa permitirá obter um número muito maior de combinações diferentes. A placa antiga permitia menos de 18 milhões de combinações.

Considerando que existam 10 algarismos e 26 letras para comporem as placas, quantas seriam as combinações no novo modelo, aproximadamente?

- A) 45 milhões
- B) 175 milhões
- C) 258 milhões
- D) 333 milhões
- E) 457 milhões

Em um determinado bairro de uma cidade, três papelarias vendem produtos consumidos pelos estudantes: caneta, lápis e borracha. As papelarias vendem esses itens em conjuntos compostos por certas quantidades de cada, conforme o esquema abaixo.

Sabendo que o preço de cada item é igual nas três papelarias e que o preço do conjunto de cada papelaria está apresentado acima, qual sistema matricial representa o modelo de resolução matemática para encontrar o preço unitário de cada objeto?

Considere:

x: preço unitário da caneta

y: preço unitário do lápis verde

z: preço unitário da borracha

A)
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 3 & 2 \\ 2 & 7 & 6 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix}$$

C)
$$\begin{bmatrix} 2 & 7 & 6 \\ 1 & 2 & 3 \\ 4 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix}$$

E)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 7 & 6 \\ 4 & 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix}$$

B)
$$\begin{bmatrix} 4 & 3 & 2 \\ 2 & 7 & 6 \\ 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix}$$

D)
$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 7 & 3 \\ 3 & 6 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \\ 12 \end{bmatrix}$$

Uma escola está organizando uma competição de vôlei, com times de 6 estudantes. Para o time A, se candidataram 4 meninos e 6 meninas. Quantas combinações são possíveis para que se tenha um número igual de meninos e meninas nesse time?

- A) 1
- B) 24
- C) 80
- D) 210
- E) 2880

Em uma praça de alimentação de um *shopping center*, três amigos, Paula, Roberta e Saulo, resolveram fazer uma refeição.

Ao observarem o cardápio disponível, perceberam que teriam que pedir o que era denominado de "Combo", ou seja, um combinado de vários itens por um preço já estabelecido.

Após pagarem por seus combos, os amigos ficaram curiosos para descobrirem o valor de cada um dos itens, que sabiam que era o mesmo, não importando o combo. Para isso, Paula montou, a partir dos pedidos de cada um dos amigos, a seguinte equação matricial:

$$\begin{bmatrix} 2 & 4 & 2 \\ 3 & 3 & 0 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 50 \\ 16 \\ 18 \end{bmatrix}$$

Em que:

x é o custo do hambúrguer

y é o custo do suco

z é o custo da sobremesa

Para resolverem essa equação, Roberta e Saulo preferiram montar o sistema linear corresponde e, portanto, encontraram:

A)
$$\begin{cases} x + 2y + z = 25 \\ x + y = 5 \\ x + 2y + 2z = 18 \end{cases}$$

C)
$$\begin{cases} 2x + 4y + 2z = 50 \\ 3x + 3y = 16 \\ x + 2y + 2z = 18 \end{cases}$$

E)
$$\begin{cases} 2x + 3y + z = 50 \\ 4x + 3y + 2z = 16 \\ 2x + 2z = 18 \end{cases}$$

B)
$$\begin{cases} 3x + 3y = 16 \\ x + 4y + 2z = 50 \\ x + 2y + 2z = 18 \end{cases}$$

D)
$$\begin{cases} 2x + 4y + z = 50 \\ 3x + 3y = 16 \\ x + 2y + 2z = 18 \end{cases}$$